AEDC-TR-78-35 Afatl-tr-78-55

cy 1

axaaxx

CHEMILEUN, W

ARCHIVE COPY DO NOT LOAN

AERODYNAMIC CHARACTERISTICS OF A 1/24-SCALE F-111 AIRCRAFT WITH VARIOUS EXTERNAL Stores at Mach Numbers From 0.5 to 1.3

C. F. Anderson ARO, Inc., a Sverdrup Corporation Company

PROPULSION WIND TUNNEL FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE 37389

July 1978

Final Report for Period 23 December 1977 - 9 January 1978

Approved for public release; distribution unlimited.

Property of U. S. Air Force AEDC LIBRARY F40600-77-0-0003

Prepared for

HINH

T

AIR FORCE ARMAMENT LABORATORY/DLJCA EGLIN AIR FORCE BASE, FLORIDA 32542

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center,

References to named commerical products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This report has been reviewed and approved.

GREGORY COWLEY, 2d Lt, USAF Project Manager, Research Division Directorate of Test Engineering

Approved for publication:

FOR THE COMMANDER

CHAUNCEY D. SMITH, JR, Lt Colonel, USAF Director of Test Operations Deputy for Operations

UNCLASSIFIED

	READ INSTRUCTIONS		
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM		
AEDC-TR-78-35 2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER		
4 TITLE (and Subtitle)	5 TYPE OF REPORT & PERIOD COVERED		
AERODYNAMIC CHARACTERISTICS OF A 1/24-	Final Report, 23 Dec		
SCALE F-111 AIRCRAFT WITH VARIOUS EXTERNAL	1977 – 9 Jan 1978		
STORES AT MACH NUMBERS FROM 0.5 TO 1.3	6 PERFORMING ORG. REPORT NUMBER		
7 AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)		
C. F. Anderson, ARO, Inc.			
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Arnold Engineering Development Center	Program Element 65807F		
Air Force Systems Command Arnold Air Force Station, TN 37389	System 06ZA, Task 01		
11 CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE		
Air Force Armament Laboratory/DLJCA	July 1978		
Eglin Air Force Base, Florida 32542	13 NUMBER OF PAGES 129		
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15 SECURITY CLASS. (of this report)		
	UNCLASSIFIED		
	15. DECLASSIFICATION DOWNGRADING SCHEDULE N/A		
16 DISTRIBUTION STATEMENT (of this Report)			
Approved for public release; distribution unlimited.			
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)		
18 SUPPLEMENTARY NOTES			
Available in DDC.			
19 KEY WORDS 'Continue on reverse aids if necessary and identify by block number)			
F-111 aircraft			
external stores			
aerodynamic characteristics			
wind tunnel tests			
transonic flow			
20 ABSTRACT (Continue on reverse side if necessary and identify by block number)			
This report presents and discusses the results of transonic			
wind tunnel tests conducted to evaluate the effects of external			
stores on the aerodynamic characteristics of the F-111 aircraft at			
wing sweep angles of 26, 45, and 54 deg. The analysis includes			
evaluation of the incremental changes in th	e drag, static margin,		
and lateral-directional derivatives associated with the various			
store configurations. Wind tunnel coefficient data for a clean			

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

20. ABSTRACT (Continued)

baseline configuration are also presented. Data are presented with pylons alone, GBU-10, GBU-15CCW, GBU-15CCW with extended Pave Tack pod, AGM-65, Rockeye, SUU-30H/B, and MK-82SE stores. Data are presented for Mach numbers ranging from 0.5 to 1.3 at angles of attack from -2 to 16 deg at zero sideslip angle, and for sideslip angles from -10 to 10 deg at angles of attack of 5, 10, and 15 deg.

AFSC Arnold AFS Tean

UNCLASSIFIED

PREFACE

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), at the request of the Air Force Armament Laboratory (AFATL/DLJCA) under Program Element 65807F. The Armament Development and Test Center (ADTC) project monitor was Lt. Thomas Speer. The results of the test were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project Number P41C-O4A. Data reduction was completed on February 3, 1978, and the manuscript was submitted for publication on May 16, 1978.

Page

CONTENTS

1.0	INTRODUCTION
2.0	APPARATUS
	2.1 Test Facility and Model Support System 5
	2.2 Test Articles
	2.3 Instrumentation
3.0	TEST DESCRIPTION 6
	3.1 Test Conditions, Procedures, and Test Program
	3.2 Data Reduction and Corrections
	3.3 Data Uncertainty
4.0	TEST RESULTS
	4.1 Aerodynamic Characteristics of the Baseline Configuration 8
	4.2 Effects of Reynolds Number, Transition Grit, and Afterbody
	Modifications
	4.3 Aerodynamic Hysteresis Effects
	4.4 Effects of External Store Loadings
5.0	SUMMARY OF RESULTS

ILLUSTRATIONS

Figure

'n

•

1.	Tunnel Installation	13		
2.	F-111 Model	14		
3.	External Store Suspension Equipment	20		
4.	External Stores	23		
5.	Boundary-Layer Transition Grit Pattern	30		
6.	Pylon/Store Configuration Identification	31		
7.	Tunnel Flow Angularity	32		
8.	Aerodynamic Characteristics of the F-111 Aircraft,			
	Clean Configuration	33		
9.	. Static Stability Derivatives and Drag Coefficients of the			
	F-111 Aircraft, Clean Configuration	51		
10.	Reynolds Number Effects	56		
11.	Transition Grit Effects, $\Lambda = 26 \text{ deg}$	62		
12.	Sting Fairing Effects, $\Lambda = 26 \text{ deg}$	65		

AEDC-TR-78-35

Figu	re	Page
13.	Typical Hysteresis Effects, $a = 15 \text{ deg}$, $\Lambda = 45 \text{ deg}$, $M_{\infty} = 1.2 \dots \dots \dots$	68
14.	Effects of External Stores on the Static Margin	74
15.	Effects of External Stores on the Drag Coefficient	84
16.	Effects of External Stores on the Static Directional Stability	
	Derivative	94
17.	Effects of External Stores on the Effective Dihedral	104

TABLES

. . .

.

1.	Part Number Index	114
2.	Aerodynamic Coefficient Uncertainties	127
3.	Incremental Drag Coefficients	128
	NOMENCLATURE	129

.

.

. .

•

.

.

1.0 INTRODUCTION

Wind tunnel tests were conducted to evaluate the effects of various external store loadings on the performance and stability of an F-111 aircraft model. The tests were conducted in the Aerodynamic Wind Tunnel (4T) of the AEDC Propulsion Wind Tunnel Facility (PWT) using a 1/24-scale F-111 aircraft model. Static longitudinal stability, drag, and static lateral-directional stability data were obtained for the clean aircraft model, model with pylons alone, and model with various external store configurations. These data were obtained for wing sweep angles of 26, 45, and 54 deg at Mach numbers from 0.5 to 1.3. Angle of attack was varied from -2 to 16 deg at zero sideslip angle. Sideslip angle was varied from -10 to 10 deg at angles of attack of 5, 10, and 15 deg.

2.0 APPARATUS

2.1 TEST FACILITY AND MODEL SUPPORT SYSTEM

Tunnel 4T is a continuous flow, closed-loop, variable density wind tunnel equipped with a sonic nozzle. The normal Mach number range is from 0.1 to 1.3; however, removable nozzle block inserts can be installed to give Mach numbers of 1.6 and 2.0. The stagnation pressure can be varied from 300 to 3,700 psfa. The test section is 4 ft square and 12.5 ft long with perforated, variable porosity (0.5- to 10-percent open) walls. A detailed description of the tunnel and its capabilities may be found in the <u>Test Facilities Handbook.</u>¹

The model support system consists of a pitch sector and sting which provide a pitch capability from -8 to 28 deg with respect to the tunnel centerline. The pitch center is located at tunnel station 108. The model support system has a remote-control roll system that allows the model to be rolled ± 180 deg.

A schematic of the test section showing the model location is presented in Fig. 1, and model details and installation photographs are presented in Fig. 2.

2.2 TEST ARTICLES

. .

The test articles were 1/24-scale models of the F-111 aircraft, AGM-65, Rockeye, MK-82SE, SUU-30H/B, GBU-10, and GBU-15CCW stores, an extended Pave Tack pod, and associated suspension equipment. The F-111 model had flow-through ducts and was equipped with Type II inlets (no splitter plates) containing fixed 10-deg inlet spikes and

¹<u>Test Facilities Handbook</u> (Tenth Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, May 1974.

AEDC-TR-78-35

nozzle plugs. The aft fuselage and exhaust nozzles were modifed to allow insertion of the balance and sting. The model had a fairing above and below the sting between the exhaust nozzles; however, it was removed to avoid fouling the sting. Limited data were obtained with steel shimstock fairings installed between the exhaust nozzles to evaluate the effects of removing the sting fairing on the aerodynamic coefficients. The model is shown with and without the fairing in Fig. 2. The model stabilator was held constant at zero deg with respect to a waterline throughout the test.

The LAU-88 triple rail launchers used with the AGM-65 stores were modified by deleting the stop normally installed at the aft end of each rail to allow for the installation of store balance sting mounts; however, the AGM-65 stores were bolted directly to the launchers for the current test. Basic details and dimensions of the models are presented in Figs. 2 through 4. The transition grit pattern used in evaluating possible boundary-layer transition effects is shown in Fig. 5. Only limited testing was conducted with transition grit installed on the model.

Pylons were installed at the pivot stations (3 through 6) for all testing except for data obtained for the clean configurations. BRU-3AA racks were installed only on those pylons carrying MK-82SE, SUU-30H/B, or Rockeye stores. The pylon loadings for all configurations tested are presented in Fig. 6.

The Pave Tack pod is semisubmerged in the weapons bay when extended. A model representing the exposed portion of the extended Pave Tack pod was attached to the centerline of the weapons bay at MS 12.78 when required.

2.3 INSTRUMENTATION

A six-component, internal strain-gage balance was used to measure the forces and moments on the F-111 model. Two base pressure measurements were made using transducers and orifice tubes which extended just aft of the base of the nozzle plugs.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS, PROCEDURES, AND TEST PROGRAM

,

Static stability data were obtained for all configurations at Mach numbers from 0.5 to 1.3 at a constant total pressure of 1,200 psfa. Limited data were also obtained at 2,000 psfa for $M_{\infty} = 0.5$, 0.9, and 1.3 with $\Lambda = 26$ and 54 deg with the clean model in order to evaluate possible Reynolds number effects. Transition grit effects were evaluated with the clean model at $p_t = 1,200$ psfa for Mach numbers from 0.6 to 0.95 with $\Lambda = 26$ deg. The nominal test conditions were:

M	P _t , psfa	Re x 10 ⁻⁶ , per foot
0.5	1,200	1.71
0.5	2,000	2.80
0.7	1,200	2.11
0.8	1,200	2.30
0.9	1,200	2.41
0.9	2,000	4.09
0.95	1,200	2.44
1.05	1,200	2.50
1.10	1,200	2.53
1.20	1.200	2.55
1.30	1,200	2.55
1.30	2,000	3.99

The test procedures were conventional in nature, consisting of varying the model angle of attack incrementally at zero sideslip angle, or varying the model angle of sideslip at a constant angle of attack. The test program that was completed during these tests is presented in Table 1 and provides a key to all the wind tunnel data obtained.

3.2 DATA REDUCTION AND CORRECTIONS

.

Wind tunnel force and moment data were reduced to coefficient form in the stability axis system. Base drag was calculated using an average of two nozzle plug pressure measurements and was used to calculate forebody coefficients. However, all data presented in this report are measured coefficients. Moments were referenced to MS 21.951 (45-percent MAC at $\Lambda = 16$ deg), WL 7.396, and BL 0 (see Fig. 2).

The angle of attack and angle of sideslip were corrected for sting and balance deflections caused by the aerodynamic loads. The model was tested both upright and inverted at the three wing sweep angles to provide the data to correct for tunnel flow angularity. On the basis of these data, the angle of attack was corrected as indicated by the curve faired through the data presented in Fig. 7. Corrections for the components of model weight, normally termed static tares, were also applied to the data.

3.3 DATA UNCERTAINTY

The data uncertainties determined for a confidence level of 95 percent are presented in Table 2. The aerodynamic coefficient uncertainties include the uncertainties of Mach number and dynamic pressure together with the uncertainty contribution associated with the balance and instrumentation system. Model angle-of-attack uncertainty has been estimated to be ± 0.1 deg and model roll angle ± 0.4 deg.

4.0 TEST RESULTS

The static stability and drag characteristics of the clean F-111 aircraft model are presented together with data showing the incremental effects of various external stores on the drag and on the static longitudinal and lateral-directional stability derivatives. All aerodynamic coefficients are presented for the baseline (clean) configuration; however, only incremental data are presented to show the effects of external stores. The incremental data were obtained by subtracting coefficients and derivatives of the baseline configuration from the coefficients and derivatives of the configurations with stores.

Drag increments were calculated at specific lift coefficients from nonlinear curve fits of the lift and drag coefficients. The static margins were evaluated by taking the slope of a linear least-squares curve fit of C_m versus C_L for nominal angles of attack from -2 to 6 deg. Lateral-directional derivatives were also evaluated from linear least-squares curve fits of the data for nominal sideslip angles from -4 to 4 deg.

All moment coefficients and stability derivatives are referenced to a standard moment reference center located at 45 percent of the MAC with the wing at 16 deg sweep angle (see Fig. 2).

4.1 AERODYNAMIC CHARACTERISTICS OF THE BASELINE CONFIGURATION

The static aerodynamic characteristics of the clean F-111 model are presented in Fig. 8. Although the characteristics are generally well behaved, the lift coefficient variation with angle of attack exhibited unusual changes in slope at $M_{\infty} = 0.9$ and 0.95 with $\Lambda = 26$ deg. Also, the rolling-moment coefficient was less well behaved at $M_{\infty} \ge 0.8$ for $\Lambda = 26$ deg. The reason for the rolling-moment coefficient behavior is not known; however, hysteresis checks made at a = 15 deg indicate that the data repeated within the data uncertainty when the model was yawed in both directions. Hysteresis is responsible for the shift in the C_n curves at a = 15 deg at supersonic Mach numbers (Fig. 8e) and is discussed further in Section 4.3.

The data presented in Fig. 8 are summarized in Fig. 9 in terms of static longitudinal and lateral-directional stability parameters and drag coefficients at specific values of the lift coefficient. These data show that the F-111 model has essentially neutral static longitudinal stability at $\Lambda = 26$ deg. Static longitudinal stability increases with increasing wing sweep angle and with increasing Mach number for $M_{\infty} > 0.9$.

The static margin was calculated by a linear fit of the C_L versus C_m curves in order to provide a single figure representative of the static longitudinal stability over a moderate angle-of-attack range. This procedure provides a reasonable approximation for $\Lambda =$ 45 and 54 deg; however, both C_L and C_m have significant nonlinearities at low angles of attack at $\Lambda = 26$ deg. Therefore, static margins for $\Lambda = 26$ deg were also calculated by determining the slope of a nonlinear curve fit of C_L versus C_m at specific values of C_L to show the effects of nonlinearities on the static margin (Fig. 9b). The linear curve fit represents a reasonable approximation of the static margin in the angle-of-attack range of interest for Mach numbers through 0.8. At $M_{\infty} = 0.9$ and 0.95, at $\Lambda = 26$ deg, SM and Δ SM should be used with caution because of the nonlinearities in C_L and C_m .

As shown in Fig. 9, the F-111 model was directionally stable at all conditions tested except at a = 15 deg at $M_{\infty} = 1.05$ and 1.1, where the model became directionally unstable. The F-111 model also had favorable effective dihedral except at a = 5 deg for Mach numbers near 0.8 and 0.9 at $\Lambda = 26$ deg.

4.2 EFFECTS OF REYNOLDS NUMBER, TRANSITION GRIT, AND AFTERBODY MODIFICATIONS

The effects of Reynolds number were investigated by testing the clean model at $p_t = 2,000$ psfa at $M_{\infty} = 0.5$, 0.9, and 1.3 for $\Lambda = 26$ and 54 deg (Fig. 10). A; arent Reynolds number effects are evident for angles of attack above 8 deg at $M_{\infty} = 0.5$ and at all angles of attack at $M_{\infty} = 0.9$ for $\Lambda = 26$ deg. At $\Lambda = 54$ deg, increasing Reynolds number had no effect at $M_{\infty} = 0.9$; at $M_{\infty} = 1.3$, increasing Reynolds number decreased C_L , increased C_m , and had little effect on C_D for angles of attack above 8 deg. The addition of transition grit (Fig. 11) had no significant effect on the aerodynamic coefficients of the clean model at $\Lambda = 26$ deg, indicating that the changes produced by increasing total pressure are not necessarily boundary-layer transition effects.

High balance dynamic loads limited the testing that could be accomplished at $p_t = 2,000$ psfa. Since the primary purpose of the test was to evaluate the incremental changes in aerodynamic coefficients by adding external stores to the F-111 aircraft, and the effects produced by increasing total pressure are not believed to affect the incremental data, all store effect data were obtained at $p_t = 1,200$ psfa and without transition grit.

9

The model was designed with fairings above and below the sting between the nozzle ducts. These fairings were deleted to prevent the sting from fouling the model (Fig. 2c). The effects of removing the fairings were investigated at $\Lambda = 26$ deg by welding steel shimstock between the nozzle ducts as shown in Fig. 2c. The effects of the sting fairings on C_L , C_m , and C_D are shown in Fig. 12. As expected, the principal effect of the sting fairings was to increase the nose-down pitching moment at all Mach numbers. There was also a slight increase in C_L at angles of attack above 6 deg at $M_{\infty} = 0.95$. All data presented in this report were obtained with the sting fairing removed except for the data presented in Fig. 12.

...

4.3 AERODYNAMIC HYSTERESIS EFFECTS

Aerodynamic hysteresis occurs when the value of an aerodynamic coefficient depends on the past history of the model motion, and this phenomenon makes analysis and application of the data difficult. Aerodynamic hysteresis had been observed in pitch and yaw polars at angles of attack below 20 deg during recent transonic wind tunnel tests of a fighter configuration. Therefore, a brief survey was conducted to determine whether aerodynamic hysteresis occurred within the angle-of-attack and sideslip range of the current test.

Hysteresis effects were investigated by pitching and yawing the model in both directions. No significant hysteresis effects were observed for pitch polars; however, significant hysteresis effects were observed in yaw polars with the clean configuration for a = 15 deg at supersonic Mach numbers. Typical hysteresis effects obtained while yawing the model from -10 to 10 to -10 deg for the clean aircraft and with 12 SUU-30H/B stores, at $M_{\infty} = 1.2$ and a = 15 deg, are presented in Fig. 13. At these test conditions, all aerodynamic coefficients except C_N exhibited some hysteresis for the clean configuration, with yawing moment showing the most pronounced effect. Only limited hysteresis data were taken with external stores; however, the data suggest that the addition of pylons, with or without external stores, significantly reduced hysteresis effects during yaw polars. Because test time was limited, all yaw polars could not be run in both directions. Therefore, most of the yaw polars were run with increasing β , and all yaw data presented in the remainder of this report were obtained while increasing β from -10 to 10 deg.

4.4 EFFECTS OF EXTERNAL STORE LOADINGS

The effects of pylons and various loadings of external stores on the static margin are presented in Fig. 14. Pylons-alone and single-carriage store effects are shown in Figs. 14a through d, and multiple-carriage store effects are shown in Figs. 14e through j. All

external store loadings were generally destabilizing, except at $M_{\infty} = 0.8$ and 0.9 with $\Lambda = 26$ deg. Single-carriage loads were generally less destabilizing than multiple-carriage loads. Adding the extended Pave Tack pod to the model with four GBU-15CCW stores had little effect on the static longitudinal stability at subsonic Mach numbers and produced a slight increase in static longitudinal stability at supersonic Mach numbers.

Incremental drag data showing the effects of pylons and various external store loadings on the drag of the clean F-111 model are presented in Fig. 15. The variations of the incremental drag coefficients exhibit the normal transonic drag rise. The incremental drag coefficients also decrease with increasing wing sweep angle. Drag increments produced by the various external stores at representative level flight values of C_L are also presented in tabulated format in Table 3.

The effects of various external store loadings on the static directional stability derivative are presented in Fig. 16 in the form of incremental changes in the static directional stability derivative. Most pylon store configurations had little effect on static directional stability except at $M_{\infty} = 0.9$ and 0.95 where the GBU-10, GBU-15CCW, and AGM-65 stores generally degraded the static directional stability at a = 15 deg. At supersonic Mach numbers, pylon store configurations generally increased the static directional stability (positive $\Delta C_{n\beta}$). The static directional stability contribution of all pylon store configurations increased with increasing Mach number and wing sweep angle at supersonic Mach numbers. Adding the extended Pave Tack pod to the fuselage centerline degraded the static directional stability at all wing sweep angles, angles of attack, and Mach numbers.

The effects of external store configurations on the effective dihedral are presented in Fig. 17. At $\Lambda = 26$ deg, pylon stores generally increased the effective dihedral (negative $\Delta C_{\ell\beta}$) at a = 5 deg. At higher angles of attack, most pylon store configurations decreased the effective dihedral. In particular, the incremental data in Figs. 17c and d, when compared to the clean configuration data in Fig. 9e, show that the GBU-15CCW with and without the extended Pave Tack pod degraded $C_{\ell\beta}$ sufficiently to change the effective dihedral from favorable to unfavorable at a = 15 deg at $M_{\infty} = 0.7$.

Increasing the wing sweep angle decreased the effect of pylon stores on the effective dihedral. However, at $\Lambda = 45$ deg, the low effective dihedral of the clean aircraft at a = 5 and 10 deg for $M_{\infty} > 0.9$ allowed all pylon store configurations to reduce the effective dihedral to near zero. Adding the extended Pave Tack pod to the aircraft with four GBU-15CCW stores had no significant effect on the effective dihedral.

5.0 SUMMARY OF RESULTS

Transonic wind tunnel tests were conducted to determine the effects of external stores on the aerodynamic characteristics of the F-111 aircraft. The results obtained are summarized as follows:

- 1. For the moment reference point chosen, the clean aircraft model exhibited near-neutral longitudinal stability for a 26-deg wing sweep angle and was directionally unstable at high angles of attack at Mach numbers 1.05 and 1.10.
- 2. The clean aircraft model exhibited hysteresis effects during yaw polars for all coefficients except the normal-force coefficient. The yawing-moment coefficient exhibited the most hysteresis effects. Addition of pylons, or pylons and stores, significantly reduced hysteresis effects.
- 3. Generally, all pylon store and pylon configurations tested decreased the static longitudinal stability, except for Mach numbers 0.8 and 0.9 at wing sweep angles of 26 deg, where pylons, single carriage, and AGM-65 store configurations increased the static longitudinal stability.
- 4. Adding pylon stores generally had little effect on the static directional stability at subsonic Mach numbers except at $M_{\infty} = 0.9$ and 0.95, where the GBU-10, GBU-15CCW, and AGM-65 were destabilizing at high angles of attack. All external stores increased the static directional stability at supersonic Mach numbers.
- 5. Most pylon store configurations produced a favorable dihedral effect at an angle of attack of 5 deg and an unfavorable dihedral effect at higher angles of attack at a wing sweep angle of 26 deg. Increasing wing sweep angle decreased the effect of pylon stores on the effective dihedral.
- 6. Adding the extended Pave Tack pod increased the static longitudinal stability at Mach numbers above 1.0, increased the drag coefficient, decreased the static directional stability, and had no significant effect on the effective dihedral.

Figure 1. Tunnel installation.

AEDC-TR-78-35

.

Λ

16(Ref)

26

45

54

60

72 5

FS

20.962

21.297

21,843

22 047

22 160

22.238

BL

4913

4,771

4.352

4.096

3.910

3,488

•

.

b. Wodel base details Figure 2. Continued.

c. Model photographs Figure 2. Continued.

c. Continued Figure 2. Continued.

DIMENSIONS IN INCHES

a. Pylon Figure 3. External store suspension equipment.

OUTBD PIVOT PYLON

8.061

8.046

8.021

8.012

8.006

7.997

•

22

c. LAU-88 triple-rail launcher Figure 3. Concluded.

a. GBU-10 Figure 4. External stores.

b. GBU-15CCW Figure 4. Continued.

24

•

c. Extended Pave Tack pod Figure 4. Continued.

d. AGM-65 Maverick Figure 4. Continued.

e. Rockeye Figure 4. Continued.

ı.

DEMENSIONS IN INCHES

ς.

f. SUU-30H/B Figure 4. Continued.

.

DIMENSIONS IN INCHES #150 TRANSITION GRIT

NOTE:

TRANSITION GRIT USED ONLY FOR LIMITED TESTING TO EVALUATE TRANSITION GRIT EFFECTS

Figure 5. Boundary-layer transition grit pattern.

.

<u> </u>			3 4 0		
STORES	BRU-3A/A RACK	LEFT OUTBOARD	LEFT INBOARD	RIGHT INBOARD	RIGHT OUTBOARD
CLEAN					
PYLONS ALONE	N/A	0	0	D	0
4 GBU-10	N/A	ð	·	8	8
4 GBU-15 CCW	N/A		Ö	ð	ð
4 GBU-15 CCW AND CENTERLINE PAVE TACK POD	N/A	ð	Q	Ö	0
12 AGM-65 ON LAU-88 RACKS	N/A		ofo	ofo	ofo
16 ROCKEYE (Slant 4 Loading)	FORWARD AFT	ഹിഷ്ട	പ്പാപ്പ	 ∞	ညီတို
12 ROCKEYE	FORWARD AFT	00000000000000000000000000000000	0	D	ర్శరిక్
12 SUU-30 H/B	FORWARD AFT	ංදිංදි පරිංදි	0	٥	<u>ళ</u> ింశ్రం
12 MK-82SE	FORWARD AFT	000 000 000	O	0	808 2080
22 MK- 82SE	FORWARD AFT	0 0 0 000	000 000	000 000 000	0 0 0 000

Figure 6. Pylon/store configuration identification.

.

31

•

WING SWEEP 26 DEG 45 DEG 54 DEG Ο ∆ □ 0.6 O Δα DEG UPWASH 0.4 Q 0.2 0 - 0.2 └-0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.1 1.3 M∞

.

32

AEDC-TR-78-35

.

a. Continued, $\Lambda = 45 \text{ deg}$ Figure 8. Continued.

a. Concluded, $\Lambda = 54$ deg Figure 8. Continued.

Figure 8. Continued.

Figure 8. Continued.

AEDC-TR-78-35

37

-

b. Concluded, $\Lambda = 54 \text{ deg}$ Figure 8. Continued.

Ο

Ø

Ø

Ω

•

1.6

1.2

CL

c. Continued, Λ = 45 deg Figure 8. Continued.

-

Figure 8. Continued.

~

SYM	ALPHA
Ο	5 DEG
o	10 DEG
Δ	15 DEG

Figure 8. Continued.

SYM	ALPHA
Ο	5 DEG
	10 DEG
Δ	15 DEG

44

Ĵ

SYM	Alpha	
Ο	5 DEC	;
o	10 DEC	;
Δ	15 DEC	;

e. Yawing-moment coefficient, Λ = 26 deg Figure 8. Continued.

SYM	ALPHA
Ο	5 DEG
D	10 DEG
Δ	15 DEG

SYM	Alpha
O	5 DEG
Ō	10 DEG
Δ	15 DEG

e. Concluded, Λ = 54 deg Figure 8. Continued.

SYM	alpha
Ο	S DEG
1	10 DEG
Δ	15 DEG

ł

SYM	Alpha
o	5 DEG
	10 DEG
Δ	15 DEG

f. Continued, Λ = 45 deg Figure 8. Continued.

SYM	ALPHA
Ο	5 DEG
o	10 DEG
Δ	15 DEG

a. Lift curve slope Figure 9. Static stability derivatives and drag coefficients of the F-111 aircraft, clean configuration.

•

b. Static margin Figure 9. Continued.

c. Drag coefficient Figure 9. Continued.

,

e. Effective dihedral Figure 9. Concluded.

Re x 10-6 M_{co} = 0.50 M_{co} = 0.90 PT 1200 1.71 0 2.41 Δ 2000 2.80 3.99 1.6 $M_{\infty} = 0.50 + M_{\infty} = 0.90$ c_L A 1.2 0.8 0.4 æ 0 ď ď --0.4 └--4 0 0 4 8 12 16 20 α

a. Lift coefficient, $\Lambda = 26 \text{ deg}$ Figure 10. Reynolds number effects.

-

Re x 10⁻⁶ $M_{\infty} = 0.50$ $M_{\infty} = 0.90$ PT 1200 0 1.71 2.41 Δ 2000 2.80 3.99 M_{co} = 0.50 M_∞ = 0.90 Ą n d Ŕ d O

Figure 10. Continued,

Re x 10⁻⁶

-

•

a. Lift coefficient Figure 11. Transition grit effects, Λ = 26 deg.

GRIT

OFF

ON

0

⊿

c. Drag coefficient Figure 11. Concluded.

a. Lift coefficient Figure 12. Sting fairing effects, Λ = 26 deg.

⊙ ∆

r

WITHOUT STING FAIRING WITH STING FAIRING

Figure 12. Continued.

Ś

Figure 12. Concluded.

CLEAN

×

12 SUU-30 STORES

CLEAN

12 SUU-30 STORES

b. Pitching-moment coefficient Figure 13. Continued.

β

12 SUU-30 STORES

١

d. Side-force coefficient Figure 13. Continued.

12 SUU-30 STORES

•

f. Rolling-moment coefficient Figure 13. Concluded.

a. Pylons alone Figure 14. Effects of external stores on the static margin.

•

b. Four GBU-10 stores Figure 14. Continued.

c. Four GBU-15CCW stores Figure 14. Continued.

d. Four GBU-15 stores and extended Pave Tack pod Figure 14. Continued.

e. 12 AGM-65 stores Figure 14. Continued.

f. 16 Rockeye stores (slant 4 loading) Figure 14. Continued.

-

.

h. 12 SUU-30 stores (outboard pylons) Figure 14. Continued.

,

j. 22 MK-82SE stores Figure 14. Concluded.

AEDC-TR-78-35

CL 0 0.2 0.6

⊙ ∆

-

d. Four GBU-15CCW stores and extended Pave Tack pod Figure 15. Continued.

87

.

e. 12 AGM-65 stores Figure 15. Continued.

,

f. 16 Rockeye stores (slant 4 loading) Figure 15. Continued. AEDC-TR-78-35

CL ⊙ 0 △ 0.2 □ 0.6

j. 22 MK-82SE stores Figure 15. Concluded.

	œ	
0	5	DEG
	10	DEG
Δ	15	DEG

a. Pylons alone Figure 16. Effects of external stores on the static directional stability derivative.

•

b. Four GBU-10 stores Figure 16. Continued.

	α	
⊙ □ △	5 10 15	DEG DEG DEG

c. Four GBU-15CCW stores Figure 16. Continued.

....

Figure 16. Continued.

.

,

	œ	
0	5	DEG
	10	DEG
Δ	15	DEG

e. 12 AGM-65 stores Figure 16. Continued.

f. 16 Rockeye stores (slant 4 loading) Figure 16. Continued.

	α	
0	5	DEG
\Box	10	DEG
Δ	15	DEG

g. 12 Rockeye stores (outboard pylons) Figure 16. Continued. .

h. 12 SUU-30 stores (outboard pylons) Figure 16. Continued.

	α	
0	5	DEG
	10	DEG
Δ	15	DEG

-

j. 22 MK-82SE stores Figure 16. Concluded.

	α	
0	5	DEG
0	10	DEG
ا∆	15	DEG

b. Four GBU-10 stores Figure 17. Continued.
	α	
Θ	5	DEG
D	10	DEG
⊿	15	DEG

d. Four GBU-15CCW stores and extended Pave Tack pod Figure 17. Continued.

	α	
0	5	DEG
	10	DEG
Δ	15	DEG

e. 12 AGM-65 stores Figure 17. Continued.

f. 16 Rockeye stores (slant 4 loading) Figure 17. Continued.

	œ	
Θ	5	DEG
	10	DEG
⊿	15	DEG

٩,

h. 12 SUU-30 stores (outboard pylons) Figure 17. Continued.

111

•

	œ	
0	5	DEG
	10	DEG
Δ	15	DEG

•

j. 22 MK-82SE stores Figure 17. Concluded.

Table	1.	Part	Number	Index
-------	----	------	--------	-------

Config	Store Loading	g	Wing	α.	в.				Ma	ch Nur	nber				
	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
1	Clean	Clean	Clean	26	v	0	32	39	45	51	61				
					v	0	38	4 0	47	52	62				
					5	v	36	43	49	59	64				
					10	v	37	44	50	60	65				
				+	15	v	** 34	** 41	** 48	** 55	6 3				
				45	v	0		217	222	227	233	238	243	248	
					v	0		218	223	228	234	239	244	249	
					5	v		220	225	231	236	241	246	251	
					10	v		221	226	232	237	242	247	252	
Ļ	Ļ	Ļ	Ļ	Ļ	15	v		219	224	230	235	240	245	250	

*Model inverted for tunnel flow angularity check.

**Model yawed from 0 to -10 to +10 to -10 deg for yaw hysteresis check.

***Model pitched from -2 to 18 to 0 deg for pitch hysteresis check.

Table 1	. C	ontin	ued
---------	-----	-------	-----

	_ Sto	re Loadin	g	Wing	α.	в.				Ma	ch Num	ber			
Config.	Outboard	lnboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
1	Clean	Clean	Clean	54	v	0				*** 450	460	*** 465	470	*** 475	480
					v	o				456	461	466	471	476	481
					5	v				459	464	469	474	479	484
					10	v				458	463	468	473	478	483
				Ļ	15	v				457	462	467	472	477	482
1 ^a	Clean	Clean	Clean	26	v	0	29			30					
				54	v	0				770					774
				ļ	15	v				773					775
13 ^b	Clean	Clean	Clean	26	v	0	974	975	976	977	978				
14 ^c	Clean	Clean	Clean	26											
		1	1 1		V	0	<u>982</u>	984	986	988	990				
					15	v	** 983	** 985	** 987	** 989	991 992 993			<u> </u>	

 ${}^{a}P_{T}$ = 2,000 for Reynolds number effects.

^bAfterbody modification.

^CAfterbody modification and transition grit.

Table 1. Continued

I	Γ	······		r	T	r	t								
Config.	Sto	re Loadir	lg	Wing	α,	β,			_	Ma	ich Nur	nber			
	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
2	3 AGM65	3 AGM65	Clean	26	v	0	69	73	77	81	85				
					5	v	70	74	_ 78	82	86				
					10	v	71	75	79	83	87				
				15	v	72	76	80	84	88					
		45	v	0		256	260	264	268	272	276	280			
				5	v		257	261	265	269	273	277	281		
					10	v		258	262	266	270	274	278	282	
					15	v		259	263	267	271	275	279	** 283	
			54	v	0				491	495	499	503	507	511	
			5	v				492	496	500	504	508	512		
					10	v				493	497	501	505	509	513
			ļ	↓	15	v				494	498	502	506	510	514

Table 1. Continued

· ..

	Sto	re Loadir	ıg	Wing	α.	β,				Ma	ch Num	ıber			
Config.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
3	4 Rockeye	4 Rockeye	Clean	26	v	0	146	150	154	158	162				
					5	v	147	151	155	159	163				
					10	v	148	15 2	156	160	164				
				15	v	149	153	157	161	165					
			45	v	0		349	353	357	364	368	372	376		
					5	v		350	354	361	365	369	373	377	
					10	v		351	355	362	366	370	374	378	
					15	v		352	356	363	367	371	375	379	
				54	v	0				572	576	580	584	588	592
					5	v				573	577	581	585	589	593
					10	v				574	578	582	586	590	594
					15	v				575	579	583	587	591	595

.

.

Table 1. Continued

Config	Store Loading		ng	Wing	α,	β.				Ma	ch Nur	nber													
Conrig.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3										
4	GBU-15 CCW	GBU-15 CCW	Clean	26	v	U	120	124	128	132	136														
					5	v	121	125	129	133	137		L												
					10	v	122	12ó	130	134	138														
					15	v	123	127	131	135	139														
		45	v	0		318	322	326	330	334	338	342													
				5	v		319	323	327	331	335	339	343												
					10	v		320	324	328	332	336	340	344											
																15	v		321	325	329	333	337	341	345
				54	v	0				545	549	553	557	561	565										
			5	v				546	550	554	558	562	566												
			10	v				547	551	555	559	563	567												
	ļ		•		15	v				548	552	556	560	564	568										

Table	1.	Continu	ed
1 0010		Oonuna	<u>u</u> u

	Sto	re Loadin	g	Wing	a.	в.				Ma	ch Nun	ıber		-	
Config.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
5	GBU-15 CCW	GBU-15 CCW	Pave Tack	26	v	0	92	96	102	106	110				
					5	v	93	97	103	107	111				
					10	v	94	98	104	108	112				
					15	v	95	99 100	105	109	113				
				45	v	0		287	291	295	299	303	307	311	
					_5	v		288	292	296	300	304	308	312	
					10	v		289	293	297	301	305	309	313	
				-	15	v		290	294	298	302	306	310	314	
				54	v	0				518	522	526	530	534	538
					5	v			1	519	523	527	531	535	539
					10	v				520	524	528	532	536	540
		ļ	ļ		15	v				521	525	529	533	537	541

AEDC-TR-78-35

Table 1. Continued

Config	Sto	re Loadir	ıg	Wing	α,	β,				Ma	ch Nur	nber			
conrig.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
6	6 MK-82SE	Pylon	Clean	26	v	0	169	173	177	181	185				
					5	v	170	174	178	182	186				
					10	v	171	175	179	183	187				
				ļ	15	v	172	176	180	184	188				
				45	v	0		_ 383	387	391	395	399	403	408	
					5	v		384	388	392	396	400	404	409	
					10	v		385	389	393	397	401	405	410	
				↓	15	v		386	390	394	398	402	406	411	
				54	v	0				708	712	719	723	727	731
					5	v				709	713	720	724	728	732
					10	v				710	714	72 1	725	729	733
ł	ł	ļ	Ļ	Ļ	15	v				711	715	722	726	730	734

Table 1. Continued

	Store Loading		Wing	a.	в.				Ma	ch Num	ıber				
Config.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
7	6 SUU 30	Pylon	Clean	26	v	0	193	197	201	205	209				
	-				5	v	194	198	202	206	210				
					10	v	195	199	203	207	211			-	
				Ļ	15	v	196	200	204	208	212				
				45	v	0		415	419	423	427	435	439	*** 443	
					5	v		416	420	424	428	436	440	444	
					10	v		417	421	425	429	437	441	445	
					15	v		418	422	426	430	438	442	446	
				54	v	0				599	603	607	611	615	619
					5	v		·		600	604	608	612	616	620
					10	v				601	605	609	613	617	621
		ļ			15	v				602	606	610	614	618	622

•

Table 1. Continued

				r	T	· · · · ·	1	<u> </u>							
Config.	Sto	ore Loadi	ng	Wing	α,	β,				Ma	ch Nur	nber			
	Outboard	Inboard	CL	deg deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
8	6. Rockeye	Pylon	Clean	26	v	0	856	860	864	868	873				
					_5	v	857	861	865	870	874				
					10	v	858	862	866	871	875				
					15	v	859	863	867	872	876				
				45	v	0		880	884	888	892	896	900	904	
					5	v		.881	885	889	893	897	901	905	
					10	v		882	886	890	894	898	902	906	
				Ļ	15	v		883	887	891	895	899	903	907	
				54	v	0				626	630	634	638	642	646
					5	v				627	631	635	639	643	647
					10	v				628	632	636	640	644	648
Ļ					15	v				629	633	637	641	645	649

x

	Table	1.	Continu	ed
--	-------	----	---------	----

	Sto	re Loadin	lg	Wing	~	a				Ma	ch Num	ıber			
Config.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
10	GBU-10	GBU-10	Clean	36	v	0	832	836	840	844	848		1		
					5	v	833	837	841	845	849				
					10	v	834	838	842	846	850				
					15	v	835	839	843	847	851				
				45	v	0		911	915	919	924	928	932	936	
					5	v		9.12	916	920	925	929	933	937	
					10	v		913	917	921	926	930	934	938	
				Ļ	15	v		914	918	922	927	931	935	939	
				54	v	0	-			653	657	661	665	669	673
					5	v				654	658	662	666	670	674
					10	v				655	659	663	667	671	675
		Ļ	Ļ		15	v				656	660	664	668	672	676

ī

-

	Table	1.	Continued
--	-------	----	-----------

Config	Sto	ore Loadi	ng	Wing	Wing Sweep, a,		Wing Sweep, a,					Ма	ich Nur	nber			
conrig.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3		
11	Pylon	Pylon	Clean	26	v	0	786	790	794	798	802						
					5	v	787	791	795	799	803						
					10	v	788	792	796	800	804						
					15	v	789	793	797	801	805						
				54	v	0				680	684	688	692	696	701		
					5	v				681	685	689	693	698	702		
					10	v				682	686	690	694	699	703		
_ ↓	Ļ	Ļ	Ļ	Ļ	15	v				683	687	691	695	700	704		

-

· ·

-

-

Table 1. Concluded

0	Sto	re Loadin	8	Wing	~	R				Ma	ch Nur	nber			
Config.	Outboard	Inboard	CL	deg	deg	deg	0.5	0.7	0.8	0.9	0.95	1.05	1.1	1.2	1.3
12	5 MK-82SE	6 MK-82SE	Clean	26	v	0	808	813	817	821	825				
					5	v	809	814	818	822	826				
					10	v	811	815	819	823	827				
					15	v	812	816	820	824	828				
				45	v	0		943	947	951	955	95 9	963	967	
					5	v		944	948	952	956	960	964	968	
					10	v		945	949	953	957	961	965	969	
				-	15	v		946	950	954	958	962	966	970	
				54	v	0				738	742	746	750	754	759
					5	v				739	743	747	751	755	760
					10	v				740	744	748	752	756	761
Ļ	ł	Ļ	ļ	ļ	15	v				- 741	745	749	753	757	762

_

AEDC-TR-78-35

M _∞	$q_{\infty}^{}$, psf	±ôC _L	±δC _m	±6CD	±δCy	±ôC _n	±ôC _l
0.50	180	0.0350	0.0136	0.0124	0 .010 1	0.0016	0.0010
0.70	295	0.0188	0.0084	0.0071	0.0060	0.0010	0.0006
0.80	350	0.0144	0.0071	0.0057	0.0050	0.0008	0.0005
0.90	400	0.0122	0.0064	0.0050	0.0043	0.0007	0.0005
0.95	425	0.0117	0.0062	0.0048	0.0041	0.0007	0.0005
1.05	460	0.0100	0.0063	0.0043	0.0037	0.0006	0.0004
1.10	475	0.0093	0.0059	0.0041	0.0036	0.0006	0.0004
1.20	500	0.0082	0.0055	0.0038	0.0034	0.0006	0.0004
1.30	515	0.0073	0.0051	0.0035	0.0033	0.0006	0.0004

Table 2. Aerodynamic Coefficient Uncertainties

				∆c _D	
Stores	Pylon Loading	Rack	$\Lambda = 26^{\circ}$ $M_{\infty} = 0.7$ $C_{L} = 0.6$	$\Lambda = 45^{\circ}$ $M_{o} = 0.9$ $C_{L} = 0.4$	$\Lambda = 54^{\circ}$ M = 1.2 C _L = 0.2
Pylons alone	_	_	0.004	-	0.005
4 GBU-10	Single	_	0.011	0.014	0.019
4 GBU-15CCW	Single	-	0.013	0.017	0.025
4 GBU-15CCW Pave Tack Pod	Single	-	0.018	0.023	0.031
12 AGM-65	Multiple	LAU-88	0.022	0.031	0.035
16 Rockeye	Multiple Slant 4	BRU-3A/A	0.017	0.019	0.023
12 Rockeye	Multiple Outboard	BRU- 3A/A	0.010	0.012	0.021
12 SUU-30H/B	Multiple Outboard	BRU-3A/A	0.018	0.021	0.032
12 MK-82SE	Multiple Outboard	BRU-3A/A	0.010	0.011	0.016
22 MK-82SE	Multiple	BRU-3A/A	0.016	0.019	0.028

Table 3. Incremental Drag Coefficients

-

NOMENCLATURE

- b Model reference span, 31.500 in.
- BL Model buttline, in.
- C_A Axial-force coefficient, axial force/ $q_{\infty}S$
- C_D Drag coefficient, drag/q_mS
- C_D Drag coefficient at zero lift
- ΔC_D Incremental changes in drag coefficient caused by adding external stores; positive values indicate a drag increase
- C_L Lift coefficient, lift/q_sS.
- C_{La} Lift curve slope, slope of a linear least-squares curve fit of the lift coefficient versus angle of attack from $-2 \le a \le 6$ deg, per degree
- C_L Centerline
- Ce Rolling-moment coefficient, rolling moment/q_Sb
- $C\ell_{\beta}$ Effective dihedral, slope of a linear least-squares curve fit of the rolling-moment coefficient versus sideslip angle from $-4 \le \beta \le 4$ deg, per degree
- $\Delta C \varrho_{\beta}$ Incremental change in the effective dihedral caused by adding external stores; positive values indicate a favorable dihedral effect
- C_m Pitching-moment coefficient, pitching moment/ q_{∞} Sc (see Fig. 2 for moment reference location)
- C_N Normal-force coefficient, normal force/ $q_m S$
- C_n Yawing-moment coefficient, yawing moment/q_wSb
- $C_{n\beta}$ Static directional stability derivative, slope of a least-squares curve fit of the yawing-moment coefficient versus sideslip angle from $-4 \le \beta \le 4$ deg, per degree
- $\Delta C_{n\beta}$ Incremental changes in the static directional stability derivative caused by adding external stores; positive values indicate a destabilizing effect

- C_Y Side-force coefficient, side force/ $q_{\infty}S$
- $C_{Y\beta}$ Side-force derivative, slope of a linear least-squares curve fit of the side-force coefficient versus angle of sideslip from $-4 \le \beta \le 4$ deg, per degree
- \overline{c} Theoretical mean aerodynamic chord at $\Lambda = 16$ deg, 4.521 in.
- FS Model fuselage station, in.
- M_m Free-stream Mach number
- pt Free-stream total pressure, psfa
- q. Free-stream dynamic pressure, psf
- Re Unit Reynolds number, per foot
- S Model reference area, wing area, 0.911 ft²
- SM Static margin, slope of a linear least-squares curve fit of the pitching-moment coefficient versus lift coefficient from $-2 \le a \le 6$ deg, fraction of \overline{c} ; negative when the center of pressure is aft of the moment reference center
- Δ SM Incremental change in static margin caused by adding external stores; positive values indicate a destabilizing effect
- WL Model waterline from reference horizontal plane, in.
- a Model waterline angle of attack, deg
- Δa Tunnel flow angle, deg, positive for flow upwash
- β Angle of sideslip, deg
- Λ Wing leading-edge sweep angle, deg

ERRATA

AEDC-TR-78-35, July 1978 (UNCLASSIFIED REPORT)

AERODYNAMIC CHARACTERISTICS OF A 1/24-SCALE F-111 AIRCRAFT WITH VARIOUS EXTERNAL STORES AT MACH NUMBERS FROM 0.5 TO 1.3

C. F. Anderson, ARO, Inc.

Arnold Engineering Development Center Air Force Systems Command Arnold Air Force Station, Tennessee 37389

Recent tests with the 1/24-scale F-111 model used to obtain the data presented in AEDC-TR-78-35 revealed that the model can foul the sting internally ahead of the fouling strip installed for that test. Therefore, all data obtained with the 1/24-scale F-111 model were examined for possible fouling. The data indicate that fouling may have been present for most configurations at high angles of attack at Mach numbers above 1.0. The maximum angle of attack for which no indication of fouling was observed is presented in the table below for each test configuration. All data at angles of attack above those listed should be used with caution.

Config		$\Lambda = 45 \text{ deg}$	5		Λ = 54	4 deg	
Config	M = 1.05	M = 1.1	M = 1.2	M = 1.05	M = 1.1	M = 1.2	M = 1.3
1	12	10	10	12	10	10	10
2	14	14	14				14
3		1				14	14
4			14			14	14
5	14	14	14		14	14	14
6	1		14	14	14	14	12
7	14	14	14				14
8	14	14	14				14
10	14	14	14	14	14	14	12
11				12	12	12	10
12							14

Maximum Angle of Attack without Possible Fouling

Note: No evidence of fouling was observed in the data where angles are not shown. (Symbol -- indicates no data taken.)