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PREFACE

The work reported herein was conducted by the Arnold Engineering Development
Center (AEDC), Air Force Systems Command (AFSC), at the request of the Air Force
Armament Laboratory (AFATL/DLICA) under Program Element 65807F. The Armament
Development and Test Center (ADTC) project monitor was Lt. Thomas Speet. The results of
the test were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company),
operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee, under
ARO Project Number P41C-04A. Data reduction was completed on February 3, 1978,
and the manuscript was submitted for publication on May 16, 1978.
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1.0 INTRODUCTION

Wind tunnel tests were conducted to evaluate the effects of various external store
loaﬂings on the performance and stability of an F-111 aircraft model. The tests were
conducted in the Aerodynamic Wind Tunnel (4T) of the AEDC Propulsion Wind Tunnel
Facility (PWT) using a 1/24-scale F-111 aircraft model. Static longitudinal stability, drag,
and static lateral-directional stability data were obtained for the clean aircraft model,
modeél with pylons alone, and model with various external store configurations. These
data were obtained for wing sweep angles of 26, 45, and 54 deg at Mach numbers from
0.5 to 1.3. Angle of attack was varied from -2 to 16 deg at zero sideslip angle. Sideslip
angle was varied from -10 to 10 deg at angles of attack of 5, 10, and 15 deg.

2.0 APPARATUS
2.1 TEST FACILITY AND MODEL SUPPORT SYSTEM

Tunnel 4T is a continuous flow, closed-loop, variable density wind tunnel equipped
with a sonic nozzle. The normal Mach number range is from 0.1 to 1.3; however,
removable nozzle block inserts can be installed to give Mach numbers of 1.6 and 2.0. The
stagnation pressure can be varied from 300 to 3,700 psfa. The test section is 4 ft square
and 12,5 ft long with perforated, variable porosity (0.5- to 10-percent open} walls. A
detailed description of the tunnel and its capabilities may be found in the Test Facilities
Handbook.!

The model support system consists of a pitch sector and sting which provide a pitch
capability from -8 to 28 deg with respect to the tunnel centerline. The pitch center is
located at tunnel station 108. The model support system has a remote-control roll system
that allows the model to be rolled *180 deg.

A schematic of the test section showing the model location is presented in Fig. 1,
and model details and installation photographs are presented in Fig. 2.

2.2 TEST ARTICLES

The test articles were 1/24-scale models of the F-111 aircraft, AGM-65, Rockeye,
MK-82SE, SUU-30H/B, GBU-10, and GBU-15CCW stores, an extended Pave Tack pod,
and associated suspension equipment. The F-111 model had flow-through ducts and was
equipped with Type II inlets (no splitter plates) containing fixed 10-deg inlet spikes and

ITest Facilities Handbook (Tenth Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold
Engineering Development Center, May 1974,
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nozzle plugs. The aft fuselage and exhaust nozzles were modifed to allow insertion of the
balance and sting. The model had a fairing above and below the sting between the
exhaust nozzles; however, it was removed to avoid fouling the sting. Limited data were
obtained with steel shimstock fairings installed between the exhaust nozzles to evaluate
the effects of removing the sting fairing on the aerodynamic coefficients. The model is
shown with and without the fairing in Fig. 2. The model stabilator was held constant at
zero deg with respect to a waterline throughout the test.

The LAU-88 triple rail launchers used with the AGM-65 stores were modified by
deleting the stop normally installed at the aft end of each rail to allow for the
installation of store balance sting mounts; however, the AGM-65 stores were bolted
directly to the launchers for the current test. Basic details and dimensions of the models
are presented in Figs. 2 through 4. The transition grit pattern used in evaluating possible
boundary-layer transition effects is shown in Fig. 5. Only limited testing was conducted
with transition grit installed on the model.

Pylons were installed at the pivot stations (3 through 6) for all testing except for
data obtained for the clean configurations. BRU-3AA racks were installed only on those
pylons carrying MK-82SE, SUU-30H/B, or Rockeye stores. The pylon loadings for all
configurations tested are presented in Fig. 6.

The Pave Tack pod is semisubmerged in the weapons bay when extended. A model
representing the exposed portion of the extended Pave Tack pod was attached to the
centerline of the weapons bay at MS 12.78 when required.

2.3 INSTRUMENTATION

A six-component, internal strain-gage balance was used to measure the forces and
moments on the F-111 model. Two base pressure measurements were made using
transducers and orifice tubes which extended just aft of the base of the nozzle plugs.

3.0 TEST DESCRIPTION
3.1 TEST CONDITIONS, PROCEDURES, AND TEST PROGRAM

Static stability data were obtained for all configurations at Mach numbers from 0.5
to 1.3 at a constant total pressure of 1,200 psfa. Limited data were also obtained at
2,000 psfa for M_ = 0.5, 0.9, and 1.3 with A = 26 and 54 deg with the clean model in
order to evaluate possible Reynolds number effects. Transition grit effects were evaluated
with the clean model at p; = 1,200 psfa for Mach .numbers from 0.6 to 0.95 with A = 26
deg. The nominal test conditions were:
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M. P> psfa Re x 10_6, per foot
0.5 1,200 1.71
0.5 2,000 2.80
0.7 1,200 2.11
0.8 1,200 2.30
0.9 1,200 2.41
0.9 2,000 4.09
0.95 1,200 2.44
1.05 1,200 2.50
1.10 1,200 2.53
1.20 1.200 2.55
1.30 1,200 2.55
1.30 2,000 3.99

The test procedures were conventional in nature, consisting of varying the model
angle of attack incrementally at zero sideslip angle, or varying the model angle of sideslip
at a constant angle of attack. The test program that was completed during these tests is
presented in Table 1 and provides a key to all the wind tunnel data obtained.

3.2 DATA REDUCTION AND CORRECTIONS

Wind tunnel force and moment data were reduced to coefficient form in the
stability axis system. Base drag was calculated using an average of two nozzle plug
pressure measurements and was used to calculate forebody coefficients. However, all data
presented in this report are measured coefficients. Moments were referenced to MS
21.951 (45-percent MAC at A = 16 deg), WL 7.396, and BL 0 (see Fig. 2).

The angle of attack and angle of sideslip were corrected for sting and balance
deflections caused by the aerodynamic loads. The model was tested both upright and
inverted at the three wing sweep angles to provide the data to correct for tunnel flow
angularity. On the basis of these data, the angle of attack was corrected as indicated by the
curve faired through the data presented in Fig. 7. Corrections for the components of model
weight, normally termed static tares, were also applied to the data.
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3.3 DATA UNCERTAINTY

The data uncertainties determined for a confidence level of 95 percent are presented
in Table 2. The aerodynamic coefficient uncertainties include the uncertainties of Mach
number and dynamic pressure together with the uncertainty contribution associated with
the balance and instrumentation system. Model angle-of-attack uncertainty has been
estimated to be 0.1 deg and model roll angle 0.4 deg.

4.0 TEST RESULTS

The static stability and drag characteristics of the clean F-11t aircraft model are
presented together with data showing the incremental effects of various external stores on
the drag and on the static longitudinal and lateral-directional stability derivatives. All
aerodynamic coefficients are presented for the baseline (clean) configuration; however,
only incremental data are presented to show the effects of external stores. The
incremental data were obtained by subtracting coefficients and derivatives of the baseline
configuration from the coefficients and derivatives of the configurations with stores.

Drag increments were calculated at specific lift coefficients from nonlinear curve fits
of the lift and drag coefficients. The static margins were evaluated by taking the slope of
a linear least-squares curve fit of Cy, versus Cy, for nominal angles of attack from -2 to 6
deg. Lateral-directional derivatives were also evaluated from linear least-squares curve fits
of the data for nominal sideslip angles from -4 to 4 deg.

All moment coefficients and stability derivatives are referenced to a standard
moment reference center located at 45 percent of the MAC with the wing at 16 deg
sweep angle (see Fig. 2).

4.1 AERODYNAMIC CHARACTERISTICS OF THE BASELINE CONFIGURATION

The static aerodynamic characteristics of the clean F-111 model are presented in
Fig. 8. Although the characteristics are generally well behaved, the lift coefficient
variation with angle of attack exhibited unusual changes in slope at M_ = 0.9 and 0.95
with A = 26 deg. Also, the rolling-moment coefficient was less well behaved at M_ > 0.8
for A = 26 deg. The reason for the rolling-moment coefficient behavior is not known;
however, hysteresis checks made ata = 15 deg indicate that the data repeated within the
data uncertainty when the model was yawed in both directions. Hysteresis is responsible

for the shift in the C, curves at a =15 deg at supersonic Mach numbers (Fig. 8¢} and is
discussed further in Section 4.3,
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The data presented in Fig. 8 are summarized in Fig. 9 in terms of static longitudinal
and lateral-directional stability parameters and drag coefficients at specific values of the
lift coefficient. These data show that the F-111 model has essentially neutral static
longitudinal stability at A = 26 deg. Static longitudinal stability increases with increasing
wing sweep angle and with increasing Mach number for M_ > 0.9.

The static margin was calculated by a linear fit of the C;. versus Cm curves in order
to provide a single figure representative of the static longitudinal stability over a
moderate angle-of-attack range. This procedure provides a reasonable approximation for A =
45 and 54 deg; however, both C and C, have significant nonlinearities at low angles of
attack at A = 26 deg. Therefore, static margins for A = 26 deg were also calculated by
determining the slope of a nonlinear curve fit of Cp versus Cy, at specific values of Cy, to
show the effects of nonlinearities on the static margin (Fig. 9b). The linear curve fit
represents a reasonable approximation of the static margin in the angle-of-attack range of
interest for Mach numbers through 0.8. At M_ = 0.9 and 0.95, at A = 26 deg, SM and
ASM should be used with caution because of the nonlinearities in C; and Cy,.

As shown in Fig. 9, the F-111 model was directionally stable at all conditions tested
except at @ = 15 deg at M_ = 1.05 and 1.1, where the model became directionally
unstable. The F-111 model also had favorable effective dihedral except at a = 5 deg for
Mach numbers near 0.8 and 0.9 at A = 26 deg.

4.2 EFFECTS OF REYNOLDS NUMBER, TRANSITION GRIT,
AND AFTERBODY MODIFICATIONS

The effects of Reynolds number were investigated by testing the clean model at p, =
2,000 psfa at M_= 0.5, 0.9, and 1.3 for A = 26 and 54 deg (Fig. 10). A, arent Reynolds
number effects are evident for angles of attack above 8 deg at M_= 0.5 and at all angles
of attack at M_ = 0.9 for A = 26 deg. At A = 54 deg, increasing Reynolds number had
no effect at M_ = 0.9; at M_ = 1.3, increasing Reynolds number decreased Cy, increased
Cn, glnd had little effect on Cp for angles of attack above 8 deg. The addition of
transition grit (Fig. 11) had no significant effect on the aerodynamic coefficients of the
clean model at A = 26 deg, indicating that the changes produced by increasing total
pressure are not necessarily boundary-layer transition effects.

High balance dynamic loads limited the testing that could be accomplished at p; =
2,000 psfa. Since the primary purpose of the test was to evaluate the incremental changes
in aerodynamic coefficients by adding external stores to the F-111 aircraft, and the
effects produced by increasing total pressure are not believed to affect the incremental
data, all store effect data were obtained at p; = 1,200 psfa and without transition grit.
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The model was designed with fairings above and below the sting between the nozzle
ducts. These fairings were deleted to prevent the sting from fouling the model (Fig. 2c).
The effects of removing the fairings were investigated at A = 26 deg by welding steel
shimstock between the nozzle ducts as shown in Fig. 2c. The effects of the sting fairings
on C.,Cn,and Cp are shown in Fig. 12. As expected, the principal effect of the sting
fairings was to increase the nose-down pitching moment at all Mach numbers. There was
also a slight increase in Cp, at angles of attack above 6 deg at M_ = 0,95, All data
presented in this report were obtained with the sting fairing removed except for the data
presented in Fig. 12. '

4.3 AERODYNAMIC HYSTERESIS EFFECTS

- Aerodynamic hysteresis occurs when the value of an aerodynamic coefficient
depends on the past history of the model motion, and this phenomenon makes analysis
and application of the data difficult. Aerodynamic hysteresis had been observed in pitch
and yaw polars at angles of attack below 20 deg during recent transonic wind tunnel tests
of a fighter configuration. Therefore, a brief survey was conducted to determine whether
aerodynamic hysteresis occurred within the angle-of-attack and sideslip range of the
current test.

Hysteresis effects were investigated by pitching and yawing the model in both
directions. No significant hysteresis effects were observed for pitch polars; however,
significant hysteresis effects were observed in yaw polars with the clean configuration for
a = 15 deg at supersonic Mach numbers. Typical hysteresis effects obtained while yawing
the model from -10 to 10 to -10 deg for the clean aircraft and with 12 SUU-30H/B
stores, at M_ = 1.2 and a = 15 deg, are presented in Fig, 13. At these test conditions, all
aerodynamic coefficients except Cy exhibited some hysteresis for the clean configuration,
with yawing moment showing the most pronounced effect. Only limited hysteresis data
were taken with external stores; however, the data suggest that the addition of pylons,
with or without external stores, significantly reduced hysteresis effects during yaw polars.
Because test time was limited, all yaw polars could not be run in both directions.
Therefore, most of the yaw polars were run with increasing 3, and all yaw data presented
in the remainder of this report were obtained while increasing § from -10 to 10 deg.

4.4 EFFECTS OF EXTERNAL STORE LOADINGS

The effects of pylons and various loadings of external stores on the static margin are
presented in Fig. 14, Pylons-alone and single-carriage store effects are shown in Figs. 14a
through d, and multiple-carriage store effects are shown in Figs. 14e through j. All

10
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external store loadings were generally destabilizing, except at M_ = 0.8 and 0.9 with A =
26 deg. Single-carriage loads were generally less destabilizing than multiple-carriage loads.
Adding the extended Pave Tack pod to the model with four GBU-15CCW stores had little
effect on the static longitudinal stability at subsonic Mach numbers and produced a slight
increase in static longitudinal’ stability at supersonic Mach numbers.

Incremental drag data showing the effects of pylons and various external store
loadings on the drag of the clean F-111 model are presented in Fig. 15. The variations of
the incremental drag coefficients exhibit the normal transonic drag rise. The incremental
drag coefficients also decrease with increasing wing sweep angle. Drag increments
produced by the various external stores at representative level flight values of Cp, are also
presented in tabulated format in Table 3.

The effects of various external store loadings on the static directional stability
derivative are presented in Fig. 16 in the form of incremental changes in the static
directional stability derivative. Most pylon store configurations had little effect on static
directional stability except at M_ = 0.9 and 0.95 where the GBU—iO, GBU-15CCW, and
AGM-65 stores generally degraded the static directional stability at @ = 15 deg. At
supersonic Mach numbers, pylon store configurations generally increased the static

directional stability (positive ACng). The static directional stability contribution of all
pylon store configurations increased with increasing Mach number and wing sweep angle
at supersonic Mach numbers. Adding the extended Pave Tack pod to the fuselage
centerline degraded the static directional stability at all wing sweep angles, angles of
attack, and Mach numbers.

The effects of external store configurations on the effective dihedral are presented in
Fig. 17. At A = 26 deg, pylon stores generally increased the effective dihedral (negative
ACQﬁ) at a = 5 deg. At higher angles of attack, most pylon store configurations decreased
the effective dihedral. In particular, the incremental data in Figs. 17¢ and d, when
compared to the clean configuration data in Fig. 9e, show that the GBU-15CCW with and
without the extended Pave Tack pod degraded CQB sufficiently to change the effective
dihedral from favorable to unfavorable at @ = 15 deg at M_= 0.7.

Increasing the wing sweep angle decreased the effect of pylon stores on the effective
dihedral. However, at A = 45 deg, the low effective dihedral of the clean aircraft ata = §
and 10 deg for M_ > 0.9 allowed all pylon store configurations to reduce the effective
dihedral to near zero. Adding the extended Pave Tack pod to the aircraft with four
GBU-15CCW stores had no significant effect on the effective dihedral.

11
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5.0 SUMMARY OF RESULTS

Transonic wind tunnel tests were conducted to determine the effects of external
stores on the aerodynamic characteristics of the F-111 aircraft. The results obtained are
summarized as follows:

1. For the moment reference point chosen, the clean aircraft model exhibited
near-neutral longitudinal stability for a 26-deg wing sweep angle and was
directionally unstable at high angles of attack at Mach numbers 1.05 and
1.10.

2. The clean aircraft model exhibited hysteresis effects during yaw polars for
all coefficients except the normal-force coefficient. The yawing-moment
coefficient exhibited the most hysteresis effects. Addition of pylons, or
pylons and stores, significantly reduced hysteresis effects.

3. Generally, all pylon store and pylon configurations tested decreased the
static longitudinal stability, except for Mach numbers 0.8 and 0.9 at wing
sweep angles of 26 deg, where pylons, single carriage, and AGM-65 store
configuations increased the static longitudinal stability.

4. Adding pylon stores generally had little effect on the static directional
stability at subsonic Mach numbers except at M_ = 0.9 and 0.95, where
the GBU-10, GBU-15CCW, and AGM-65 were destabilizing at high angles
of attack. All external stores increased the static directional stability at
supersonic Mach numbers.

5.  Most pylon store configurations produced a favorable dihedral effect at an
angle of attack of 5 deg and an unfavorable dihedral effect at higher
angles of attack at a wing sweep angle of 26 deg. Increasing wing sweep
angle decreased the effect of pylon stores on the effective dihedral.

6. Adding the extended Pave Tack pod increased the static longitudinal
stability at Mach numbers above 1.0, increased the drag coefficient,
decreased the static directional stability, and had no significant effect on
the effective dihedral.

12
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Table 1. Part Number Index

148!

S€-8L-H1-04Q3v

Store Loading Wing o 8 Mach Number
Config. Sweep, | g | 4o

Outboard| Inboard CL deg €61 d9€81 0.5 0.7} 0.8} 0.9 0.95| 1.05} 1.1] 1.2
1 Clean Clean Clean 26 v 0 32 39 45 51 61 - - -
* * * * * — - J——

v 0 38 40 47 52 62
5 v 36 43 49 59 64 - - -
10 v 37 44 50 60 65 - - -

* & * % * % %% * &

¥ 15 v 34 41 48 55 63
45 \'/ 0 -— 1217 | 222 | 227 | 233 238 2431 248
v| o | --]218( 223 228 231 | 238 | 244 245
5 v --1220) 225} 231 | 236 24] 246 251
10 v -=| 221 226 | 232 | 237 242 247] 252
% % * % 1 3] L33 &% LE ] * %
4 ¥ L 2 ¥ ] 15 v --1 219 | 224 | 230 | 235 240 245] 250

*Model inverted for tunnel flow angularity check.
**Model yawed from 0 to -10 to +10 to -10 deg for yaw hysteresis check.
***Model pitched from -2 to 18 to 0 deg for pitch hysteresis check.




STI1

Table 1. Continued

- Store Loading Wing Mach Number
Config. - — Sweep, a, 8, - —
outboard| 1nboard CL deg deg (deg| 0.5 0.7! 0.8 0.9 0.95| 1.05) 1.1| 1.2 1.3
LT 8.3 % % % * k%

1 Clean Clean |Clean 54 v 0 - -— -- | 450 | 460 465 470 4751 480

* * %* *

v 0 - - --1 456 | 461 466 471 | 476 | 481

5 v - - -—-| 459 | 464 469 474 ) 479 | 484

10 v - - -—| 458 | 463 468 473)] 478 ] 483

* ¥ *% * X *% * %k %* %

! | { L L |15 v —| ~-| --14a57) 462 | 467 | 472| 477 482

12 Clean Clean |Clean 26 v 0 29| --{ --| 30| -- -- —} == =--

54 v | o —| --] --j770| -- - —| -] 774

v : L L l 1s | v | ==} —-| —=|773| --| -- | --| --| 775
13b Clean Clean Clean 26

v 0 974 1 9751 976 | 977 978 - - - -
14°¢ Clean Clean Clean 26

v 0 982 | 984 | 986 | 988 990 - - - -

x* %
Tk %k s P 99%
15 v 983 | 985 | 987 | 989 383 - - - -

apr = 2,000 for Reynolds number cffects.

bafterbody modification.
CAfterbody modification and transition grit.

G€-8/-HL1-203V
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Tahle 1. Continued

Store Loading Wing | R Mach Number
Config. Sweep, | geo | des

Outboard| Inboard| CL | deg €198 1 0.5 | 0.7 0.8 0.9] 0.95] 1.05] 1.1] 1.2 1.3

2 3 3 Clean 26
AGM65 | AGM65 vi]o 69| 73] 77| 81| 85 — - |- |-
5 v 70| 74| 78] 82| 86 il Rl e
10 v | 71| 75§ 79| 83| 87 —= | ==} == | ==
115 v 72| 76| 80| 84| 88 — -] - ]--

45
v 0 --] 256 | 260 | 264 | 268 | 272 |276 [280 | --
5 V| --1257] 261 265 269 | 273 [277 |281 | --
10 v | --1258] 262| 266 270 | 274 |278 |282 | --

*k

| |15 v -—| 259 ]| 263 | 267| 271 | 275 279 |283 | —-

54
vio --| =-] =~-]491}] 495 | 499 |503 [507 |511
5 v -] --1 --]492] 496 | 500 |504 |508 |512
10 V] --] ==} =--1493} 497 | 501 |505 |509 |513
- \ ] Y b (15 | v | —| --| --| 494| 498 | 502 [s06 [510 [514

GE€-8.-HL1-2Q3V
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Table 1. Continued

575

583

Store Loading Wing Mach Number
Config. Sweep, | & dB’ --
Outboard | Inboard cL deg |9e8}de8| 0.5} 0.7 0.8]|0.9]0.95] 1.05( 1.1} 1.2 1.3
3 4 4 Clean 26
Rockeye | Rockeye v | o | 146) 150] 154|158 162 | - | —— | = | -—
5 v_| 147] 151) 155] 159 163 S BT B
10 v | 148) 152 156 160 | 164 — | == =] -
t _lis v | 149) 153 157 | 161| 165 — | =] =] -
45
\4 0 --| 349} 353| 357| 364 | 368 |372 {376 | --
5 v --| 350] 354| 361| 365 | 369 |373 |377 | - |
10 \ --| 351| 355 362| 366 | 370 |374 [378 | --
r 115 A --| 352} 3561 363| 367 | 371 |375 |379 | --
54
v 0 --| --] --] 572| 576 | 580 {584 |588 [592
5 \4 --| --| -=}573] 577 | 581 |585 |589 [593
10 v --| =-=| --] 574| 578 | 582 [586 |590 [594
\ 1 p - t |5 | v| —-| -] -- 579 587 [591 595

S€-84-H.1-003V
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Table 1. Continued
Store Loading Wing Mach Number
Config. Sweep, dO'- > dB ,

Outboard| Inboard| CL | deg €8l €| 0.5 0.7(0.8{0.9(0.95] 1.05| 1.1] 1.2 1.3

4 GBU-15 | GBU-15 | Clean 26
ccw ccw v ! o | 120] 124| 128 132] 136 —— = | - | -
5 | v | 121] 125{ 129 133| 137 — | =] ] -
10 | v | 122] 125 130! 134 138 — =] -] -
L |15 | v | 123] 127] 131 135| 139 — | - -] --

45
v | o| --| 318 322| 326 330 | 334 |338 [342 | --
5 | v| --| 319 323 327| 331 | 335 {339 |343 | --
10 | v | --| 320] 324 328| 332 | 336 |340 |344 | --
Y |15 | v | --| 321| 325( 329{ 333 | 337 [341 [345 | --

54
v] o —| -=] --| s5a5| 549 | 553 |557 |561 [565
5 | v| --| --] --| s46| 550 | 554 [558 {562 |566
10| v| --| -=| --| 547]| 551 | 555 |559 |563 |567
Y Y \ ; F |15 | v| --| --| --| sas] 552 | 556 |560 |564 [568
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Table 1. Continued
Store Loading Wing Mach Number
Confi S a, | By |
g. weep, d

Outboard | Inboard| CL | deg |9e8|9¢8 | o0.5]0.7|0.8|0.9[0.95[ 1.05( 1.1} 1.2 1.3

5 GBU-15 GBU-15 Pave 26
cew ccw Tack vi|o 92| 96| 102] 106] 10| --| - - | -
5 | v 93] 97| 103]| 107] 111 _— -] -] --
10 | v 94| 98| 104| 108] 112 —f =] =] --

XK
99

| 15 | v 95| 100| 105]| 109 113 - -] -1 -]

45
vi o --| 287] 291| 295{ 299 | 303307311 | --
| 51 v --| 288] 292| 296] 300| 304 | 308|312 --
10 | V —-| 289] 293| 297 301| 305 309|313 --
| 15 | v ——| 290] 294f 298 302 306 | 310 | 314 - |

54
v]o - -o --| s18] 522| 526|530 534 | 538
5| v --] =< -- 519 523| 527|531 535|539
10 { V - -d -- 520 s524| 528] 532 536 | 540
i v 1 \ \ 15 | v -4 -4 -4 521 525! 529} 533| 537 541
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Table 1. Continued

Confi Store Loading Wing | 8 Mach Number
onfig. — Sweep, | 5.’ ’
Outboard | Inboard CL degp deg|deg | 9.5 0.7 0.8 0.9 0.95] 1.05] 1.1] 1.2] 1.3
6 6 26
MK-825E | Pylon | Clean v]o | 1e9] 173| 177 181 185 - =] —-| -=
5 | v 170 174| 178] 182| 186 - -] - --
10 | v 171| 175{ 179| 183| 187 | -] -] --
\ 15 | v 172| 176] 180/ 184 188 - -] - --
45
vi]oe --! 383] 387] 391| 395 ] 399|403 408 | --
5| v --| 384| 388| 392| 396 | 400|404 | 409 [ -~
10 | v --| 385] 389] 393} 397 401 | 405|410 | --
L 15 | v --| 386{ 390f 394| 398 | 402|406} 411 | --
54
vi]o -—-| - ~--| 708 712 | 719|723 | 727|731
5{v -——| "= --| 709] 713 720|724 728 | 732
10 | v -~{ == ==} 710 714 721725 729 | 733
4 + ! l. {
15 | v == = == 711] 715} 722|726 | 730 | 734
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Table 1. Continued

Store Loading

Wing

Mach Numbecr

Config. Sweep, | % 8, L —
Outboard | Inboard CL deg deg|deg| 0,5 0.7|0.8|0.9|0.95} 1.05| 1.1| 1.2] 1.3
7 6

SUU 30 Pylon |[Clean 26 A 0 193 | 197 | 201 | 205 | 209 - -- - -
5 v 194 | 198 | 202 | 206 | 210 - - - -
10 v 195 | 199 | 203 | 207 | 211 - - - -
¥ 15| Vv 196 | 2001 204 | 208 | 212 - -— - -

*k*%k
45 v 0 -— | 415 419 | 423 | 427 435 439 | 443 -
5 v --| 416 | 420} 424 | 428 436 440 | 444 -
10 \'/ --1 417} 421 | 425 | 429 437 441 | 445 -

* %k
l 15 v | --] 418 422 226 430 | 438 | 442| 446| --
54 Y 0 -— - --| 599 | 603 607 611] 615| 619
5 v -— - --1 600 604 608 612] 616| 620
10 v - - --] 601] 605 609 613] 617| 621
15 v - - --| 602| 606 610 614] 618| 622
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Table 1. Continued

Store Loading Wing Mach Number
Config . Sweep R a, dB )

Outboard| Inboard CL deg deg|deg | 0,5 0.7] 0.8 0.9 0.95 1.05| 1.1} 1.2} 1.3

8 6,
Rockeye| Pylon |[Clean 26 \'4 0 856 | 860 | 864 | 868 | 873 - - - -
5 \'/ 8571 861 | 865 | 870 | 874 - - - -
10 v 858 | 862 | 866 871 ]| 875 —_ - - -
b 15 v 859 | 863 | 867 ) 872 | 876 -— - - -
45 v 0 --1 880| 884 | 888 | 892 896 900 904 -
5 v -=-1 881} 885] 889 893 897 901 | 905 -
10 v -—1 882] 886 B90| 894 898 902 | 906 -
¥ 15 \'4 --1 883| 887| 891 | 895 899 903| 907 --
54 v 0 - - --| 626 | 630 634 638| 642| 646
5 v - - --1 627| 631 635 639 | 643 647
10 Vv - - -1 628| 632 636 640) 644 648
¥ + v 1 ¥ 15] Vv - - -=| 629} 633 637 641 645 649

S€-8(-H1-0a3v
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Table 1. Continued

Store Loading Wing Mach Number
Config. Sweep, | & | B»

Outboard | Inboard CL deg deg |[deg | 0.5 0.7 0.8 0.9] 0.95] 1.05] 1.1| 1.2} 1.3
10 GBU-10 GBU-10 Clean 36 \/ 0 832 | 836 | 840 | 844 848 — - - -
5 v 833 | 837 | 841 | 845 849 - - - -
10 v 834 | 838 | 842 | 846 850 - - - -
\ 15| v | 835 | 839 | 843 | 847 { B851] == ] =] -
45 v] o —- 19114 915 | 919 924 928 932 936 -
5 v --1912{ 916 | 920 9251 929 933 937 -
10 \Y -=- 19131917 | 921 926 | 930 934 | 938 -—
M 15} Vv ~-| 914} 918 | 922 927] 931 | 935|939 --
54 Vi o - - -- | 653 657] 661 665 | 669 | 673
5 v - -— -- | 654 658 662 6?6 670 | 674
10| V - - —— | 655 659 | 663 667 | 671 ] 675
v v d M v 15| v -—]| -] —-1656| 660| 664 | 668 | 672 | 676
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Table 1. Continued

Store Loading Wing Mach Number
ConEle | o tboara | tnboara] oL ek deg | deg 0.5[0.7]0.8{0.9{0.95] 1.05]1.1[ 1.2] 1.3
eg . . . . . . . . .
11 Pylon Pylon |Clean 26 v 0 786 | 790} 794 | 798 802 — - - -
5 v | 787] 791 | 795| 799 | s803| -- -] -1 --
10| v | 788 792 | 796 | 800 | 804| -- -] -] --
1] 15| v | 789 | 793| 797 | 801 | s8o5] -- —] =] --
' 54 v| o -—-| ——-| --|680] 684 688 | 692 696 701
5( v -] --| --|681| 685| 689 | 693| 698 702
10f Vv -—-| =--| --|682| 686] 690 | 694| 699] 703
+ + + } ! 15| v --] —] --]1683| 687| 691 | 695| 700| 704

SE-8L-H1-00d3V
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Table 1. Concluded

Store Loading Wing 8 Mach Number
ig. Sweep, | & ’ -
Contig Outboard| Inboard CL degp deg [deg | 0.5 | 0.7 | 0.8| 0.9} 0.95| 1.05} 1.1] 1.2 1.3
12 5 6 Clean 26
MK-82SE | MK-82SE v | o] soef si3] s17) 821} s25 | - f - f | -
5 V | 809| 814| 818| 822| 826 == -] -] --
10 v 811} 815| 819| 823| 827 -- - -- -
L 15 \' 812| 816| 820| 824| 828 - -- - -
45
\' 0 ~-] 943] 947 951] 955 959 | 963 | 967 -
5 \4 ~=| 944| 948| 952| 956 | 960 |964 | 968 | --
10 v -—| 945| 949| 953{ 957 961 | 965 | 969 -
{ 15 v -—| 946]| 950| 954| 958 962 | 966 | 970 --
54
v 0 - - =-=| 738} 742 746 | 750 | 754 | 759
5 v - ==~ =-=| 739| 743 747 751 {755 | 760
10 \'4 - - == 740] 744 748 | 752 [756 |761
Y \ 1 t T 15 v - -—| =--| 741} 745 749 |753 {757 |762

§€-84-H1-04d3v



AEDC-TR-78-35

Table 2. Aerodynamic Coefficient Uncertainties

M, |aq,, psf| *8C, | #8C | *6C | 4Cy | 8C_ | *éC,
0.50 | 180 | 0.0350 | 0.0136| 0.0124 | 0.0101 | 0.0016 | 0.0010
0.70 | 295 | 0.0188 | 0.0084 | 0.0071 | 0.0060 | 0.0010 | 0.0006
0.80 | 350 |0.0144 | 0.0071| 0.0057 [ 0.0050 | 0.0008 | 0.0005
0.90 | 400 |0.0122 | 0.0064 | 0.0050 | 0.0043 | 0.0007 | 0.0005
0.95 | 425 |0.01170.0062 | 0.0048 | 0.0041 | 0.0007 | 0.0005
1.05 | 460 |0.0100 | 0.0063 | 0.0043 | 0.0037 | 0.0006 | 0.0004
1.10 | 475 | 0.0093 { 0.0059 [ 0.0041 | 0.0036 | 0.0006 | 0.0004
1.20 | 500 | 0.0082 | 0.0055| 0.0038 | 0.0034 | 0.0006 | 0.0004
1.30 | 515 | 0.0073 | 0.0051 | 0.0035 | 0.0033 | 0.0006 | 0.0004
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Table 3. Incremental Drag Coefficients

AEDC-TR-78-35

ACD
A = 26° A = 450 A = 549
Pylon Rack M= 0.7 M.= 0.9 M=1.2
Stores : — = =
Loading CL = 0.6 L= 0.4 CL = 0.2
Pylcns alone - - 0.004 - 0.005
4 GBU-10 Single - 0.011 0.014 0.019
4 GBU-15CCW Single - 0.013 0.017 0.025
4 GBU-15CCwW .
Pave Tack Pod Single 0.018 0.023 0.031
12 AGM-65 Multiple LAU-88 0.022 0.031 0.035
16 Rockeye Multiple BRU-3A/A| 0.017 0.019 0.023
Slant 4
12 Rockeye Multiple BRU-3A/A| 0.010 0.012 0.021
Outboard
12 SUU-30H/B Multiple BRU-3A/A| 0.018 0.021 0.032
Outboard
12 MK-82SE Multiple BRU-3A/A| 0.010 0.011 0.016
Outboard
22 MK-82SE Multiple BRU-3A/A| 0.016 0.019 0.028
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AEDC-TR-78-356

CL
Ce

CQﬁ

ACQﬁ

NOMENCLATURE
Model reference span, 31.500 in.
Model buttline, in.
Axial-force coefficient, axial force/q_S
Drag coefficient, drag/q S
Drag coefficicnt at zero lift

Incremental changes in drag coefficient caused by adding external stores;
positive values indicate a drag increase

Lift coefficient, lift/q_S .

Lift curve slope, slope of a linear least-squares curve fit of the lift coefficient
versus angle of attack from -2 < a < 6 deg, per degree

Centerline
Rolling-moment coefficient, rolling moment/q_Sb

Effective dihedral, slope of a linear least-squares curve fit of the rolling-moment

-coefficient versus sideslip angle from -4 < < 4 deg, per degree

Incremental change in the effective dihedral caused by adding external stores;
positive values indicate a favorable dihedral effect

Pitching-moment coefficient, pitching moment/q_Sc¢ (sec Fig. 2 for moment
reference location)

Normal-force coefficient, normal force/q_S
Yawing-moment coefficient, yawing moment/q_Sb

Static directional stability derivative, slope of a least-squares curve fit of the
yawing-moment coefficient versus sideslip angle from -4 < § < 4 deg, per
degree

Incremental changes in the static directional stability derivative caused by
adding external stores: positive values indicate a destabilizing effect
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SM

ASM

WL

Aa

AEDC-TR-78-35

Side-force coefficient, side force/q S

Side-force derivative, slope of a linear least-squares curve fit of the side-force
coefficient versus angle of sideslip from -4 < § < 4 deg, per degree

Theoretical mean aerodynamic chord at A = 16 deg, 4.521 in.
Model fuselage station, in.

Free-stream Mach number

Free-stream total pressure, psfa

Free-stream dynamic pressure, psf

Unit Reynolds number, per foot

Model reference area, wing area, 0.911 ft2

Static margin, slope of a linear least-squares curve fit of the pitching-moment
coefficient versus lift coefficient from -2 < @ < 6 deg. fraction of c; negative
when the center of pressure is aft of the moment reference center

Incremental change in static margin caused by adding external stores; positive
values indicate a destabilizing effect

Model waterline from reference horizontal plane, in.
Model waterline angle of attack, deg

Tunnel flow angle, deg, positive for flow upwash
Angle of sideslip, deg

Wing leading-edge sweep angle, deg
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ERRATA

AEDC-TR-78-35, July 1978
(UNCLASSIFIED REPORT)

AERODYNAMIC CHARACTERISTICS OF A 1/24-SCALE
F-111 AIRCRAFT WITH VARIOUS EXTERNAL
STORES AT MACH NUMBERS
FROM 0.5 TO 1.3

C. F. Anderson, ARO, Inc.

Arnold Engineering Development Center
Air Force Systems Command
Arnold Air Force Station, Tennessee 37389

Recent tests with the 1/24-scale F-1l1 model used to obtain
the data presented in AEDC-TR-78-35 revealed that the model can
foul the sting internally ahead of the fouling strip installed for
that test. Therefore, all data obtained with the 1/24-scale F-111
model were examined for possible fouling. The data indicate that
fouling may have been present for most configurations at high
angles of attack at Mach numbers above 1.0, The maximum angle of
in the table below for each test configuration. All data at angles
of attack above those listed should be used with caution.

Maximum Angle of Attack without Possible Fouling

. A = 45 deg L = 54 deg
Config
M=1.05 M=1.1 M=1.2 M=1.05 M=1.1 M=1,2 M=1.3
1 12 10 10 12 10 10 10
2 14 14 14 14
3 14 14
4 14 14 14
] 14 14 14 14 14 14
6 14 14 14 14 12
7 14 14 14 14
8 14 14 14 14
10 14 14 14 14 14 14 12
11 - - - 12 12 12 10
12 14

Note: No evidence of fouling was observed in the data where
angles are not shown. (Symbol -- indicates no data
taken.)



